
Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 1

Fuzzy Hashing for Digital Forensic Investigators

Dustin Hurlbut - AccessData

January 9, 2009

Abstract

Fuzzy hashing allows the discovery of potentially incriminating documents that may not be located using

traditional hashing methods. The use of the fuzzy hash is much like the fuzzy logic search; it is looking

for documents that are similar but not exactly the same, called homologous files. Homologous files have

identical strings of binary data; however they are not exact duplicates. An example would be two

identical word processor documents, with a new paragraph added in the middle of one. To locate

homologous files, they must be hashed traditionally in segments to identify the strings of identical data.

Introduction

This document will discuss in lay terms what a fuzzy hash is and the theory behind it. FTK contains a

fuzzy hash utility that will enable investigators to locate evidence that otherwise could take considerable

time to track down. This would include trying to compare live documents active in the file system to

partial files recovered from unallocated or slack space. This applies to the law enforcement analyst who

is trying to determine if files were ever on a suspect’s system, or the corporate investigator who is

dealing with an employee who is removing proprietary documents and then making minor alterations to

them to avoid detection through conventional hashing techniques.

Fuzzy hashing is not a new concept. In 1999, Dr. Andrew Tridgell wrote the rsync checksum which he

later incorporated into his program called spamsum in 2002
1
. Spamsum using rsync is a fuzzy hash

utility that attempts to identify e-mail that is similar to known spam
2
. In 2003, Stephen Payne added a

utility called C-Hash to his forensic tool DataLifter.Net Bonus Tools that allowed the investigator to

combine keywords and a hash of each sector of a file which could then be compared to other sectors

both in allocated and unallocated space
3
. This was an effective tool to locate full and partial files from

the media. Jessie Kornblum identified the potential presented by spamsum to be used forensically in

2006 in his paper “Identifying almost identical files using context triggered piecewise hashing”
1
.

Background

There are three types of hashes the investigator must be familiar with to understand the fuzzy hash

utility; Cryptographic (traditional), Rolling, and Context hashing.

Cryptographic Hashes: Traditional hashing is used to validate media, to locate exact duplicate

files, alert us to known files of interest, or let us skip files that are

known to not contain evidence. Altering a single bit of data will

radically alter the hash. There is no way a cryptographic hash by itself

can show us associations with files that may have had even small

alterations of their data.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 2

Figure 1 – Traditional Cryptographic Hash Results with a Minor Data Change

In Figure 1, a traditional hash is used to compare two files. In the second file, the “1” in the top title was

removed and the two files were hashed using the MD5 cryptographic hash. The hashes are radically

dissimilar, and there is no way to ascertain that the documents are virtually identical through this type

of hash analysis.

The fuzzy hash utility makes use of traditional hashing, but in segments. The document is hashed in

sections defined in part by the size of the document. These hash segments contain fragments of

traditional hashes that are joined together for comparative purposes. Before this segmented hash can

be done, a rolling hash is used to begin the process.

Rolling Hashes: A rolling hash is used to identify the segment boundaries. It uses a

trigger value, or reset point, generated by the rolling hash engine to

determine where these segments will be created. Once located, the

data before and after each of the reset points will be processed to

create sequences of traditional hash strings.

In FTK, the trigger value is first based on the file size and on the number of trigger values in the

document. Once each trigger value is determined, the traditional hash for that segment is generated

and archived. Final hashes are computed based on dividing the file into two blocks and parsing between

the trigger values
4

in each block.

The final hash is displayed using a colon to separate the hashes derived from the two blocks of data.

This hash result is called a Context Triggered Piecewise Hash (CTPH) as postulated by Jessie Kornblum
1
.

The CTPH makes use of the traditional and rolling hashes to create a segmented hash to evaluate

documents for potential matching binary strings.

CTP Hashes: The Context Triggered Piecewise Hash is based upon segments of

traditional hashes. Comparisons can be drawn between documents

with similar strings of data that are not exact duplicates.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 3

Figure 2 – Context Triggered Piecewise Hash Analogy – Original Document

Figure 2 shows an analogy of a CTPH string. In this example, there are four trigger values. Each trigger

value is located by using the rolling hash. The data segments between each trigger value are hashed

traditionally and stored.

Figure 3 – Context Triggered Piecewise Hash Analogy – Altered Document

Figure 3 shows the same document as Figure 2, however in this example; the second paragraph has

been removed. The documents are not exact; however they are similar and should obtain a probability

match when using the fuzzy hash utility.

Traditional hashing alone will not make any conclusion between the two documents as to similarity;

however the CTPH will use the sequences to display potential homologous documents. In the example

in Figures 2 and 3, the segmented traditional hashes can be compared for potential associations. Figure

4 shows an analogy of the two hashes from Figures 2 and 3 for comparative purposes. Evaluating these

hashes shows a similarity of some identical binary streams between the two documents.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 4

Figure 4 – CTPH Comparisons from Figures 2 and 3

The comparison hashes are created by dividing the file into two blocks; BS1 and 2xBS1 (Where BS stands

for Block Size)
4
. Each block will have a hash that is a compilation of the traditional hashes that were

generated for each data stream between the trigger values. The two blocks will have a colon as a

separator in the hash sequence. In Figure 5, note the similarities between the hash sequences. In the

figure examples, a comparison was made of six text files. Each numbered file; 1, 2, 3, 4, and 5 were

updated by adding a new paragraph. Number 6 had Paragraph 2 removed from the number 5 version.

The second number four document (seen in Figure 6); “Trad Test Change the 1” had only a single byte of

data changed between it and document number 4. This was the document shown in Figure 1 where

traditional hashing did not show a match.

Figure 5 – CTPH Examples from FTK

Associations are made by scoring from 1 to 100 with 1 being the lowest and 100 being the highest

probability for similarity
5
. A “0” means that no meaningful sequence of data exists between the files. A

comparative threshold can be set to further limit the comparative hits in FTK prior to conducting the

search, such as setting the comparative value of “50” rather than the default “1”.

If files of interest are located, they will be displayed in descending order of probability. It is important to

note that this process is not perfect. Documents may or may not show a probability match depending

on a number of factors, including the type of document and the type of formatting it uses. Text

documents have no inserted formatting codes so are more reliable in comparisons with fuzzy hash

techniques than are documents created by a word processing program which have considerably more

data than just the text that is entered. Differences between formats of graphics files can also alter the

effectiveness of a fuzzy hash such as the difference between JPEG formatting procedures and Bitmaps.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 5

Figure 6 – Fuzzy Hash Results of Modified Text Files

The results of FTK fuzzy hashing on these documents are shown in Figure 6. Each numbered file; 1, 2, 3,

4, and 5 were updated by adding a new paragraph. Number 6 had Paragraph 2 removed. The second

number four document; “Trad Test Change the 1” had only a single byte of data changed between it and

document number 4. This was the document shown in Figure 1 where traditional hashing did not show

a match.

In Example A, the first document with a single paragraph was checked for possible similar files. It did

not compare to all the related files as being homologous and is missing documents 4 and 5. The second

and sixth document values shown in Examples B and C saw all the files as being potentially related.

When the testing is conducted on more complicated files, such as word documents or spreadsheets that

have embedded formatting, the results are not always as expected. Tests that discover matches should

be run on other potentially matching files to ensure all probable homologous documents are located.

This type of action can also be conducted on other types of files such as graphics. Viewing a set of

twelve bitmap graphics that were analyzed as being related, did have a functional similarity; they all had

the same border color around the graphic. See Figure 7.

Because the files are tested and a similarity is indicated won’t always mean they are similar or related.

The hash is not as distinctive as an MD5 or SHA hash. The more segments in a document, particularly

one with many minor changes, can show the document as not being related even when it may be.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 6

Forensic Issues

Creating the fuzzy hash sets takes processing time, more than that needed to create MD5 hashes for

example. The use of the fuzzy hash utility may decrease performance by 7 to 10 times the normal time

to process a case
6
 if fuzzy hashing wasn’t selected.

Obtaining a fuzzy hash of a file is limited to the file size. Smaller files under 100 bytes generally won’t be

able to generate a fuzzy hash, since they don’t have sufficient size to find the requisite trigger values.

Identical files with the same MD5 hash will fuzzy hash with the same fuzzy hash string. They will show a

100 for matching when compared to their duplicate counterparts.

The strength of fuzzy hash sets are their ability to locate similar files. They can be used to match altered

documents, such as multiple or incremental versions of the same document. Malicious alteration of a

document to avoid detection such as stolen proprietary corporate files is difficult to detect but is

apparent from fuzzy hash analysis. Fuzzy hashing will point to the documents that should be reviewed.

Fuzzy hashing can also be useful in examining partial files such as carved documents to compare to

other documents of interest. Carving may retrieve partial documents that can be related to the original.

Fuzzy hashes may also relate a document to a suspect when the incriminating document doesn’t exist in

the active file system. If the investigator has access to the original or suspected document in question,

that document can be fuzzy hashed from outside of FTK by pointing to it. It can then be compared with

carved items taken from within the image to determine if it was ever in the system at one time.

Partial graphics without headers may also be discovered in this manner. It seems to be common to

search a drive for child pornographic photos only to discover no active documents. Other evidence may

point to their existence at one time, but the files are not in the active file system. Data carving may

reveal graphics, but if their headers aren’t carved with them, they can’t normally be viewed. Fuzzy

hashes may uncover matches to partial graphics that will help determine if such files were ever in the

system at one time.

Text documents make excellent candidates for fuzzy hash comparisons. Word processed documents,

spreadsheets, and other types of documents that have extraneous formatting applied are not as

reliable; however the strings of user inputted data will often be detected in the associations.

Graphics present different issues than documents that contain textual data. The potential of successful

comparisons with graphic files will depend upon the type of graphic format that was used. A

comparison was run on a small image (Mantooth32
7
) for matches to a particular Bitmap graphic as

shown in Figure 7.

A visual inspection of the bitmaps will show they do have a similarity; their borders are all a similar

color. These bitmaps were all icons from what appears to be a single website. Each had a similar size

ranging from 1180 to 1464 bytes. It would appear from this example and others that the bitmap format

lends itself to a reasonable chance of finding similar files based in this example on similar colors, sizes,

and origin.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 7

Figure 7 – Fuzzy Hash Results for .BMP Files

Comparisons of .GIF files that appeared similar did not display any matching characteristics like the

bitmap graphics example. Figure 8 shows five .GIF files of similar size and appearance. None of these

files exhibits any similar comparative hashes from a fuzzy hash comparison.

Figure 8 – Fuzzy Hash Results for .GIF Files

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 8

The JPEG graphic format also presents unique issues based upon its format design that uses lossy

compression. Each time a JPEG is changed, it compresses portions of the data, specifically the least

significant bit(s) of pixel data. Saving a .JPEG file using the Save As dialog, Copy To, or any minor

changes such as rotating the graphic and rotating it back can change the compression. This will lead to

an inability of fuzzy hashing to detect similarities when the human eye can clearly detect what appear to

be identical graphics. There are so many minute changes that occur across the document that fuzzy

hashing can’t derive a similarity between the segments.

Figure 9 – Fuzzy Hash Results for .JPG Files

Figure 9 shows the same photograph as it was modified, Copied To, Saved As, rotated and rotated back,

and had resolution changes. None of these graphics obtain a match using the fuzzy logic utility. Each

graphic was altered and the MD5 hash sets show no matches. Even minor alterations will radically

change the format of JPEG graphics; hence, they are not a good candidate for comparative analysis using

fuzzy hashing techniques. The only matches obtained were to the document itself.

Considering the issues with the JPEG format, the potential still exists to locate matches based on partial

files obtained from data carving. The test shown in Figure 10 involved making identical copies of the

same graphic (no changes were made through lossy compression). The graphics were in turn modified

by having just the header removed, then the front, middle and back one third of the document

removed. Clicking on the original unmodified graphic didn’t match to the others. However, the

modified documents did match to the other files.

Libraries of known fuzzy hashed graphics could be used against a suspect’s machine to locate partial files

carved from unallocated space that are no longer active in the file system. This assuming no changes

from the lossy compression algorithm which would not normally occur from a download or simple copy.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 9

Figure 10 – Fuzzy Hash Results for Altered .JPEG Files

Tests were also run on .ZIP files (WinZip Version 11.1). Hits were obtained when different Zip files

contained combinations of the same archived files. Zip archiving appears to compress in a predictable

manner and zipped documents were successfully compared to partially carved zip files for matches.

FTK can create libraries of fuzzy hashes for specific document types
4,5

 such as proprietary corporate

documents or known child pornographic files. These libraries can be applied to a seized media to see if

potential matches exist without a close initial examination of each document. Letting the fuzzy hashing

utility make initial comparisons has the potential to save considerable analysis time in locating matching

documents.

Use of the fuzzy hash to locate comparative matches can be helpful; however, a complete reliance on

them could result in missing similar files in an investigation. Many file types lend themselves to

comparative matches such as text files, but some documents, like JPEG graphics do not. Investigators

should test the specific file types of interest in a case before relying on a completely automated result

returned from a fuzzy hash utility. It would appear the Mark II eyeball of the investigator will still be

required to make the final decision on whether certain documents in a case are similar or not.

References
1
 Kornblum Jesse. Identifying almost identical files using context triggered piecewise hashing. August

2006. http://dfrws.org/2006/proceedings/12-Kornblum.pdf. Published by Elsevier Ltd.
2
 Tridgell Andrew. Readme. http://www.samba.org/ftp/unpacked/junkcode/spamsum/README.

3
 DataLifter. http://www.datalifter.com/products.htm.

4
 AccessData. Fuzzy Hashing. 2008.

5
 AccessData. FTK Users Guide. 2008.

6
 Kornblum Jesse. jessekornblum.com/research/fuzzy-hashing-cdfsl-2007.ppt.

7
 AccessData. BootCamp classroom Image Mantooth32.

